Transformations Interactive Notes

Translations

A transformation in which each point of a figure moves the same ______ in the same ______.

In a translation, the pre-image & image are ______.
The corresponding sides have the ______ measurement.
The corresponding angles have the ______ measurement.

Look at the graph below. Record the coordinate pairs for the pre-image. Using the pre-image points, create two new translated images.

Pre-Image A(______) B(______) C(______)
Image (x + 5, y + 2) A'(______) B'(______) C'(______)

In words, describe the translation.

Image (x + 5, y + 2) A'(______) B'(______) C'(______)
In words, describe the translation.

Using two different colored pencils, graph the new images. Make sure to label both figures.

What rule could be used to translate the figure so it would be located in quadrant 3?

Dilations

A transformation in which each point of a figure moves ______ with respect to a fixed point, called the ______. The corresponding angles have the ______ measurement. The corresponding sides have the ______ measurement.

In a dilation, the pre-image & image are ______.
The corresponding angles have the ______ measurement.
The corresponding sides have the ______ measurement.

Look at the graph below. Record the coordinate pairs for the pre-image. Using the pre-image points, create two new translated images.

Pre-Image A(______) B(______) C(______)
Image (2x, 2y) A'(______) B'(______) C'(______)

In words, describe the dilation.

Image (2x, 2y) A'(______) B'(______) C'(______)
In words, describe the dilation.

Using two different colored pencils, graph the new images. Make sure to label both figures.

What would the coordinates be if the pre-image was rotated 270° clockwise?

Rotations

A transformation in which a figure is ______ through a given angle, called the ______ and in a given direction about a fixed point, called the ______.

In a rotation, the pre-image & image are ______.
The corresponding angles have the ______ measurement.
The corresponding sides have the ______ measurement.

90° Clockwise 90° Counter Clockwise 180° Rotation
(x, y) --> (y, -x) (x, y) --> (-y, x) (x, y) --> (-x, -y)

Look at the graph below. Record the coordinate pairs for the pre-image. Using the pre-image points, create three new rotated images.

Pre-Image Coordinates A(______) B(______) C(______)
90° Clockwise A'(______) B'(______) C'(______)
90° Counter Clockwise A'(______) B'(______) C'(______)
180° Rotation A'(______) B'(______) C'(______)

In words, describe the dilation.

Using three different colored pencils, graph the new images. Make sure to label all of the figures.

What would the coordinates be if the pre-image was rotated 90° clockwise?

Reflections

A transformation in which a figure is ______ in a line, called the ______.

In a reflection, the pre-image & image are ______.
The corresponding angles have the ______ measurement.
The corresponding sides have the ______ measurement.

Reflection in the x-axis Reflection in the y-axis
(x, y) --> (x, -y) (x, y) --> (-x, y)

Look at the graph below. Record the coordinate pairs for the pre-image. Using the pre-image points, create three new rotated images.

Pre-Image Coordinates A(______) B(______) C(______)
Reflection in the x-axis A'(______) B'(______) C'(______)
Reflection in the y-axis A'(______) B'(______) C'(______)

In words, describe the dilation.

Using two different colored pencils, graph the new images. Make sure to label all of the figures.

A Figure has line symmetry if a line, called the ______, divides the figure into two parts that are ______ of each other.
This product involves four pages of interactive notes on translations, dilations, rotations and reflections. Each note page provides an opportunity for students to complete the definition, examine and compare the angles and sides of the images, list the pre-image and image coordinates and to describe in words the transformation completed. A graph is provided with the pre-image. Students can use colored pencils to graph the additional images.

An answer key is provided.
Translations

A transformation in which each point of a figure moves the same _________ in the same _________.

In a translation, the pre-image & image are _________.

The corresponding angles have the _____ measurement.
The corresponding sides have the _____ measurement.

Look at the graph below. Record the coordinate pairs for the pre-image. Using the pre-image points, create two new translated images.

<table>
<thead>
<tr>
<th>Pre-Image</th>
<th>A (___)</th>
<th>B (___)</th>
<th>C (___)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image (x + 5, y + 2)</td>
<td>A' (___)</td>
<td>B' (___)</td>
<td>C' (___)</td>
</tr>
</tbody>
</table>

In words, describe the translation.

<table>
<thead>
<tr>
<th>Image (x + 8, y - 8)</th>
<th>A'' (___)</th>
<th>B'' (___)</th>
<th>C'' (___)</th>
</tr>
</thead>
</table>

In words, describe the translation.

Using two different colored pencils, graph the new images. Make sure to label both figures.

What rule could be used to translate the figure so it would be located in quadrant 3?

(___ , ___)
DILATIONS

A transformation in which each point of a figure-related or-unrelated with respect to a fixed point, called the origin.

In a translation, the pre-image & image are congruent. The corresponding angles have the same measurement. The corresponding sides are congruent.

Look at the graph below. Record the coordinate pairs for the pre-image. Using the pre-image points, create two new translated images.

Pre-Image	A (___)	B (___)	C (___)
Image (2x, 2y) | A’(___) | B’(___) | C’(___)

In words, describe the dilation.

Image (2x, 1y) | A”(___) | B” (___) | C” (___)

In words, describe the dilation.

Using two different colored pencils, graph the new images. Make sure to label both figures.

Compare the area of the pre-image to the image. Did the area double in size?
Complete the notes on transformations. Cut out the notes along the dotted lines and glue them in your notebook.

ROTATIONS

A transformation in which a figure is _______ through a given angle, called the ____________, and in a given direction about a fixed point, called the ________.

In a rotation, the pre-image & image are ________. The corresponding angles have the _____ measurement. The corresponding sides have the _____ measurement:

<table>
<thead>
<tr>
<th>Angle</th>
<th>Clockwise</th>
<th>Counter Clockwise</th>
<th>180° Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°</td>
<td>(x, y) → (y, -x)</td>
<td>(x, y) → (-y, x)</td>
<td>(x, y) → (-x, -y)</td>
</tr>
</tbody>
</table>

Look at the graph below. Record the coordinate pairs for the pre-image. Using the pre-image points, create three new rotated images.

<table>
<thead>
<tr>
<th>Pre-Image Coordinates</th>
<th>A (___)</th>
<th>B (___)</th>
<th>C (___)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90° Clockwise</td>
<td>A' (___)</td>
<td>B' (___)</td>
<td>C' (___)</td>
</tr>
<tr>
<td>90° Counter Clockwise</td>
<td>A'' (___)</td>
<td>B'' (___)</td>
<td>C'' (___)</td>
</tr>
<tr>
<td>180° Rotation</td>
<td>A''' (___)</td>
<td>B''' (___)</td>
<td>C''' (___)</td>
</tr>
</tbody>
</table>

Using three different colored pencils, graph the new images. Make sure to label all of the figures.

What would the coordinates be if the pre-image was rotated 270° clockwise?

© The Clever Clover, 2016
Complete the notes on transformations. Cut out the notes along the dotted lines and glue them in your notebook.

REFLECTIONS

A transformation in which a figure is ______________, in a line, called the ______________.

In a rotation, the pre-image & image are ______________.
The corresponding angles have the _____ measurement.
The corresponding sides have the _____ measurement.

Reflection in the x - axis

(x, y) → (x, -y)

Reflection in the y-axis

(x, y) → (-x, y)

Look at the graph below. Record the coordinate pairs for the pre-image. Using the pre-image points, create three new rotated images.

<table>
<thead>
<tr>
<th>Pre-Image Coordinates</th>
<th>A (___)</th>
<th>B (___)</th>
<th>C (___)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflection in the x - axis</td>
<td>A' (___)</td>
<td>B' (___)</td>
<td>C' (___)</td>
</tr>
<tr>
<td>Reflection in the y-axis</td>
<td>A'' (___)</td>
<td>B'' (___)</td>
<td>C'' (___)</td>
</tr>
</tbody>
</table>

Using two different colored pencils, graph the new images. Make sure to label all of the figures.

A figure has line symmetry if a line, called the ______________, divides the figure into two parts that are ______________ of each other in the line.
TRANSLATIONS

A transformation in which each point of a figure moves the same **distance** in the same **direction**.

In a translation, the pre-image & image are **congruent**.

The corresponding angles have the **same** measurement.

The corresponding sides have the **same** measurement.

Look at the graph below. Record the coordinate pairs for the pre-image. Using the pre-image points, create two new translated images.

<table>
<thead>
<tr>
<th>Pre-Image</th>
<th>A (-8, 8)</th>
<th>B (-8, 3)</th>
<th>C (-4, 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image (x + 5, y + 2)</td>
<td>A' (-3, 10)</td>
<td>B' (-3, 5)</td>
<td>C' (1, 5)</td>
</tr>
<tr>
<td>In words, describe the translation.</td>
<td>The image moved five units to the right and up two units.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Image (x + 8, y - 8) | A'' (0, 0) | B'' (0, -5) | C'' (4, -5) |
| In words, describe the translation. | The image moved eight units to the right and down eight units. |

Using two different colored pencils, graph the new images. Make sure to label both figures.

What rule could be used to translate the figure so it would be located in quadrant 3?

Possible Answer: (x - 1, y - 10)

DILATIONS

A transformation in which each point of a figure **stretches** or **shrinks** with respect to a fixed point, called the **center** of dilation.

In a dilation, the pre-image & image are **similar**.

The corresponding angles have the **same** measurement.

The corresponding sides are **proportional**.

Look at the graph below. Record the coordinate pairs for the pre-image. Using the pre-image points, create two new translated images.

<table>
<thead>
<tr>
<th>Pre-Image</th>
<th>A (0, 5)</th>
<th>B (0, 0)</th>
<th>C (5, 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image (2x, 2y)</td>
<td>A' (0, 10)</td>
<td>B' (0, 0)</td>
<td>C' (10, 0)</td>
</tr>
<tr>
<td>In words, describe the dilation.</td>
<td>The image doubled in size.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Image (1/2x, 1/2y) | A'' (0, 2.5) | B'' (0, 0) | C'' (2.5, 0) |
| In words, describe the dilation. | The image is half the size of the preimage. |

Using two different colored pencils, graph the new images. Make sure to label both figures.

Compare the area of the pre-image to the image. Did the area double in size?

© The Clever Clover, 2016
ROTATIONS

A transformation in which a figure is turned through a given angle, called the **angle of rotation**, and in a given direction about a fixed point, called the **center of rotation**.

In a rotation, the pre-image & image are **congruent**. The corresponding angles have the **same** measurement. The corresponding sides have the **same** measurement.

- **90° Clockwise**
 - $(x, y) \mapsto (y, -x)$

- **90° Counter Clockwise**
 - $(x, y) \mapsto (-y, x)$

- **180° Rotation**
 - $(x, y) \mapsto (-x, -y)$

Look at the graph below. Record the coordinate pairs for the pre-image. Using the pre-image points, create three new rotated images.

<table>
<thead>
<tr>
<th>Pre-Image Coordinates</th>
<th>A $(2, 6)$</th>
<th>B $(2, 1)$</th>
<th>C $(6, 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>90° Clockwise</td>
<td>A’ $(6, -2)$</td>
<td>B’ $(1, -2)$</td>
<td>C’ $(1, -6)$</td>
</tr>
<tr>
<td>90° Counter Clockwise</td>
<td>A” $(-6, 2)$</td>
<td>B” $(-1, 2)$</td>
<td>C” $(-1, 6)$</td>
</tr>
<tr>
<td>180° Rotation</td>
<td>A” $(2, -6)$</td>
<td>B” $(-2, -1)$</td>
<td>C” $(-6, -1)$</td>
</tr>
</tbody>
</table>

Using three different colored pencils, graph the new images. Make sure to label all of the figures.

What would the coordinates be if the pre-image was rotated $270°$? The coordinates would be the same as the $90°$ counter clockwise coordinates.

REFLECTIONS

A transformation in which a figure is **reflected or flipped** in a line, called the **line of reflection**.

In a reflection, the pre-image & image are **congruent**. The corresponding angles have the **same** measurement. The corresponding sides have the **same** measurement.

- **Reflection in the x-axis**
 - $(x, y) \mapsto (x, -y)$

- **Reflection in the y-axis**
 - $(x, y) \mapsto (-x, y)$

Look at the graph below. Record the coordinate pairs for the pre-image. Using the pre-image points, create three new rotated images.

<table>
<thead>
<tr>
<th>Pre-Image Coordinates</th>
<th>A $(3, 8)$</th>
<th>B $(3, 3)$</th>
<th>C $(7, 3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflection in the x-axis</td>
<td>A’ $(3, -8)$</td>
<td>B’ $(3, -3)$</td>
<td>C’ $(7, -3)$</td>
</tr>
<tr>
<td>Reflection in the y-axis</td>
<td>A” $(-3, 8)$</td>
<td>B” $(-3, 3)$</td>
<td>C” $(-7, 3)$</td>
</tr>
</tbody>
</table>

Using two different colored pencils, graph the new images. Make sure to label all of the figures.

A figure has line symmetry if a line, called the **line of symmetry**, divides the figure into two parts that are reflections of each other in the line.
Thank you for your download!

If you thought this was a quality activity you would use in your classroom, please consider following me on TpT. I appreciate your feedback! By leaving feedback, you can earn TpT credits for future TpT purchases. https://www.teacherspayteachers.com/Store/The-Clever-Clover

If you have any questions, please send me an email at clever.clover17@gmail.com

Copyright © 2016 The Clever Clover
This resource was created by The Clever Clover and must be used by the original purchaser for his/her classroom. All rights reserved. It may be printed or photocopied but may not be reproduced, sold, transmitted, or put on the internet without written permission from the author. Additional licenses are available at a discounted price.

Credits:
Clever Clover Logo Design by RebeccaB designs https://www.teacherspayteachers.com/Store/Rebeccab-Designs
Fonts by KG Fonts https://www.teacherspayteachers.com/Store/Kimberly-Geswein-Fonts
Black Graph paper by The Enlightened Elephant https://www.teacherspayteachers.com/Store/The-Enlightened-Elephant
Frame by Lovin Lit http://www.teacherspayteachers.com/Store/Lovin-Lit